3 research outputs found

    Congestion Reduction in Traditional and New Routing Architectures

    Get PDF
    In dense integrated circuit designs, management of routing congestion is essential; an over congested design may be unroutable. Many factors influence congestion: placement, routing, and routing architecture all contribute. Previous work has shown that different placement tools can have substantially different demands for each routing layer; our objective is to develop methods that allow “tuning” of interconnect topologies to match routing resources. We focus on congestion minimization for both Manhattan and non-Manhattan routing architectures, and have two main contributions. First, we combine prior heuristics for non-Manhattan Steiner trees and Preferred Direction Steiner trees into a hybrid approach that can handle arbitrary routing directions, via minimization, and layer assignment of edges simultaneously. Second, we present an effective method to adjust Steiner tree topologies to match routing demand to resource, resulting in lower congestion and better routability

    Recursive bisection based mixed block placement

    No full text
    Many current designs contain a large number of standard cells intermixed with larger macro blocks. The range of size in these “mixed block ” designs complicates the placement process considerably; traditional methods produce results that are far from satisfactory. In this paper we extend the traditional recursive bisection standard cell placement tool Feng Shui to directly consider mixed block designs. On a set of recent benchmarks, the new version obtains placements with wire lengths substantially lower than other current tools. Compared to Feng Shui 2.4, the placements of a Capo-based approach have 29 % higher wire lengths, while the placements of mPG are 26 % higher. Run times of our tool are also lower, and the general approach is scalable
    corecore